Uniform Blow-Up Rates and Asymptotic Estimates of Solutions for Diffusion Systems with Nonlocal Sources
نویسندگان
چکیده
منابع مشابه
A note on blow-up in parabolic equations with local and localized sources
This note deals with the systems of parabolic equations with local and localized sources involving $n$ components. We obtained the exponent regions, where $kin {1,2,cdots,n}$ components may blow up simultaneously while the other $(n-k)$ ones still remain bounded under suitable initial data. It is proved that different initial data can lead to different blow-up phenomena even in the same ...
متن کاملA Quasilinear Parabolic System with Nonlocal Sources and Weighted Nonlocal Boundary Conditions
Abstract In this paper, we investigate the blow-up properties of a quasilinear reaction-diffusion system with nonlocal nonlinear sources and weighted nonlocal Dirichlet boundary conditions. The critical exponent is determined under various situations of the weight functions. It is observed that the boundary weight functions play an important role in determining the blow-up conditions. In additi...
متن کاملTransition to Blow-up in a Reaction-Diffusion Model with Localized Spike Solutions
For certain singularly perturbed two-component reaction-diffusion (RD) systems, the bifurcation diagram of steady-state spike solutions is characterized by a saddle-node behavior in terms of some parameter β in the system. For some such systems, such as the Gray-Scott model, a spike self-replication behavior is observed as a parameter varies across the saddle-node point. We demonstrate and anal...
متن کاملA note on critical point and blow-up rates for singular and degenerate parabolic equations
In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...
متن کاملRoles of Weight Functions to a Nonlocal Porous Medium Equation with Inner Absorption and Nonlocal Boundary Condition
and Applied Analysis 3 He studied the asymptotic behavior of solutions and found the influence of weight function on the existence of global and blow-up solutions. Wang et al. 10 studied porous medium equation with power form source term ut Δu u, x, t ∈ Ω × 0, ∞ , 1.8 subjected to nonlocal boundary condition 1.2 . By virtue of the method of upper-lower solutions, they obtained global existence,...
متن کامل